Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 4, 2026
-
Beavers (Castor canadensis) have not been adequately included in critical zone research, yet they can affect multiple critical zone processes across the terrestrial-aquatic interface of river corridors. River corridors (RC) provide a disproportionate amount of ecosystem services. Over time, beaver activity, including submersion of woody vegetation, burrowing, dam building, and abandonment, can impact critical zone processes in the river corridor by influencing landscape evolution, biodiversity, geomorphology, hydrology, primary productivity, and biogeochemical cycling. In particular, they can effectively restore degraded riparian areas and improve water quality and quantity, causing implications for many important ecosystem services. Beaver-mediated river corridor processes in the context of a changing climate require investigation to determine how both river corridor function and critical zone processes will shift in the future. Recent calls to advance river corridor research by leveraging a critical zone perspective can be strengthened through the explicit incorporation of animals, such as beavers, into research projects over space and time. This article illustrates how beavers modify the critical zone across different spatiotemporal scales, presents research opportunities to elucidate the role of beavers in influencing Western U.S. ecosystems, and, more broadly, demonstrates the importance of integrating animals into critical zone science.more » « lessFree, publicly-accessible full text available February 12, 2026
-
ABSTRACT Methane emissions by global wetlands are anticipated to increase due to climate warming. The increase in methane represents a sizable emissions source (32–68 Tg CH4year−1greater in 2099 than 2010, for RCP2.6–4.5) that threatens long‐term climate stability and poses a significant positive feedback that magnifies climate warming. However, management of this feedback, which is ultimately driven by human‐caused warming and thus “indirectly” anthropogenic, has been largely unexplored. Here, we review the known range of options for direct management of rising wetland methane emissions, outline contexts for their application, and explore a global scale thought experiment to gauge their potential impact. Among potential management options for methane emissions from wetlands, substrate amendments, particularly sulfate, are the most well studied, although the majority have only been tested in laboratory settings and without considering potential environmental externalities. Using published models, we find that the bulk (64%–80%) of additional wetland methane will arise from hotspots making up only about 8% of global wetland extent, primarily occurring in the tropics and subtropics. If applied to these hotspots, sulfate might suppress 10%–21% of the total additional wetland methane emissions, but this treatment comes with considerable negative consequences for the environment. This thought experiment leverages results from experimental simulations of sulfate from acid rain, as there is essentially no research on the use of sulfate for intentional suppression of additional wetland methane emissions. Given the magnitude of the potential climate forcing feedback of methane from wetlands, it is critical to explore management options and their impacts to ensure that decisions made to directly manage—or not manage—this process be made with the best available science.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Sulfur, as an essential nutrient for plant growth, has increasingly been used in fertiliser applications for many crops. This increase is coincident with declines in atmospheric sulfur deposition in response to air quality improvements in the United States and Europe. Here, we evaluate trends in sulfur fertiliser sales by mass, as a proxy for fertiliser applications, and estimate total atmospheric sulfur deposition across the Midwestern United States. Crop acreage, yield and sulfur fertiliser application substantially increased between 1985 and 2015, coincident with declines in atmospheric sulfur deposition. The increase in sulfur fertiliser has outpaced the relative rate of change in other major nutrient fertilisers including nitrogen, phosphorus and potassium, by approximately 7-fold prior to 2009, and 29-fold after 2009. We suggest that there is a critical need to develop sulfur management tools that optimize fertiliser applications to maintain crop yields while minimizing the consequences of excess sulfur in the environment.more » « less
-
Soil physical properties, such as soil texture, color, bulk density, and porosity are important determinants of water flow (e.g., infiltration and drainage), biogeochemical cycling, and plant community composition. In addition, they reflect the environment in which the soil developed, giving insight into climate, mineralogy, and land cover. While many soil assessments require sophisticated laboratory equipment, some can be made simply by a trained individual, requiring only practice and reference materials. For students in environmental fields, it is particularly important and empowering to learn how to make informed soil observations that provide insights from the soil pedon to the landscape and that can be done within the field setting. Drawing on updated pedagogical approaches, including active learning, small group collaboration, and metacognitive exercises, this paper presents a course module for teaching soil texture and color analysis in the field that can be modified for students from secondary through graduate school. The combination of asynchronous, pre-course readings and assessment; synchronous, in-class instruction, hands-on practice, and application activities; and post-class reflection give students the opportunity to build a strong foundation for making soil observations. This course module is suitable for both in-person and remote learning modalities and can be adapted to a number of course topics across environmental disciplines. Ultimately, the goal is to provide students with exciting, hands-on training that inspires them to learn more about soils regardless of the learning platform.more » « less
-
Abstract The environmental fates and consequences of intensive sulfur (S) applications to croplands are largely unknown. In this study, we used S stable isotopes to identify and trace agricultural S from field-to-watershed scales, an initial and timely step toward constraining the modern S cycle. We conducted our research within the Napa River Watershed, California, US, where vineyards receive frequent fungicidal S sprays. We measured soil and surface water sulfate concentrations ([SO42−]) and stable isotopes (δ34S–SO42−), which we refer to in combination as the ‘S fingerprint’. We compared samples collected from vineyards and surrounding forests/grasslands, which receive background atmospheric and geologic S sources. Vineyardδ34S–SO42−values were 9.9 ± 5.9‰ (median ± interquartile range), enriched by ∼10‰ relative to forests/grasslands (−0.28 ± 5.7‰). Vineyards also had roughly three-fold higher [SO42−] than forests/grasslands (13.6 and 5.0 mg SO42−–S l−1, respectively). Napa Riverδ34S–SO42−values, reflecting the watershed scale, were similar to those from vineyards (10.5 ± 7.0‰), despite vineyard agriculture constituting only ∼11% of the watershed area. Combined, our results provide important evidence that agricultural S is traceable at field-to-watershed scales, a critical step toward determining the consequences of agricultural alterations to the modern S cycle.more » « less
An official website of the United States government
